Clarifier Performance Evaluations, Inc.

317 Crystal Lake Road Enfield, NH 03748

An Evaluation of Circular Clarifier Sludge Collection Equipment

By: John K. Esler, P.E., President ¹

<u>Advantages / Claims</u>	<u>Disadvantages</u>	
1. Multiple tube arrangement can remove	a. Creates some stirring, which may keep the	
sludge where it settles, esp. a sludge with a	sludge blanket in suspension.	
high SVI!	b. RAS tubes often interfere with the flow	
	from the centerfeed inlet ports.	
2. Can minimize denitrification and P-release		
by removing sludge rapidly.		
3. Creates a stirring motion, which may	Creates a stirring motion, which may prevent	
enhance flocculation	the blanket from compacting and reduce	
	RAS concentration.	
4. Creates a stirring motion which may		
enhance the release of denite bubbles,		
thereby reducing rising sludge.		
5. Provides for sludge removal control for	Practically speaking, many operators do not	
each "ring" area of the clarifier floor.	take advantage of the individual control of	
	the RAS tubes.	
6. Individual terminal control valves allow	a. Practically speaking, control of tube flow	
optimizing control of each RAS tube flow.	rate is often determined by the setting that	
	minimizes tube plugging.	
	b. Some types of control valves are not	
	operator-friendly for varying flows.	
7. Selective sizing of tubes provides for	a. Use of large tubes at the outside may lead	
sludge removal in proportion to the area of	to plugging at low velocities.	
floor covered.	b. Use of small diameter tube near center	
	almost always leads to plugging due to small	
	diameter.	
8. Surface sight well provides for observation	a. RAS well box has seal that can wear and	
and sampling of RAS tubes and total RAS	leak, causing a dilution of the RAS.	
flow.	b. RAS well depth lowers inlet feed location,	
	should require deeper c-well or EDI.	
9. RAS tube configuration makes it amenable		
for use of a Crosby cylindrical baffle		
10. Minimum floor slope required.		
11. Use of long-radius elbows minimizes	Use of multiple 90 degree elbows increases	
head loss.	head loss.	

1. Draft Tube (RSR) Suction Devices

1. <u>www.clarifiers.com</u> or <u>eslercpe@aol.com</u> (tel.518-577-3000)

2. Uni-Tube (Manifold) Suction Devices

Advantages / Claims	<u>Disadvantages</u>
1. Removes sludge where it settles without	a. Improperly designed orifices can defeat
channeling it to multiple draw-off tubes;	suction advantages.
allows total floor area to be used.	b. The smaller inner holes tend to plug
	Probably should not be considered without
	primary treatment and excellent pre-
	screening
2. "Sucks" its way through the blanket,	This motion would not enhance flocculation,
creating little disturbance.	but a truss on the opposite side does.
3. The lower "profile" creates less	A suction header has been known to develop
disturbance moving through the sludge	an internal air pocket, causing the header to
blanket.	rise slightly, and the skimmer to dip
	proportionately.
4. Less disturbance of the blanket may lead	
to a more concentrated RAS	
5. A more concentrated RAS reduces the	
power cost for RAS pumping.	
6. An increased RAS concentration permits	May require a certain RAS flow rate or
higher MLSS concentration.	periodic reverse pumping to keep the header
	from clogging with sludge.
7. Direct connection to RAS pumps simplifies	The operator can't tell whether or not it's
RAS control.	drawing from the entire area because the
	orifices are hidden from view.
8. A properly designed tapered header	a. An improperly designed header will
maintains scouring velocity in header which	contribute to clogging.
should minimize header clogging.	b. lower RAS rates lead to plugging of the
	outer section
9. Minimum floor slope required; reduces	a. Some minimum slope is required for
construction costs.	dewatering.
	b. Requires a <u>much</u> deeper blanket in
	clarifiers with a standard sloped floor.
10. Suction plus squeegee action can	The suction header top and bottom seals
maintain a lower blanket and rapid total	always need maintenance or replacement in
removal, reducing opportunities for P-release	order to maintain good suction.
and denitrification.	Denitrification may occur more often with the
	blanket well over the outer orifice.
	(Note: Maintenance people tend to overlook
	the bottom seal.)

3. <u>Standard Scraper Blade / Plow Blade Collectors</u>

Advantages	<u>Disadvantages</u>
1. Conventional, best known technology	Because of the perception that this is "old technology", it has fallen into disfavor.
2. Squeegee blades system permits clean scraping of the floor.	Sludge blanket is somewhat re-suspended as the blades pass thru it, esp. near the perimeter even due to normal 10-12 fpm tip speed.
 3. Plow collectors move sludge continuously toward the hopper" (however, the settled activated sludge will move to the hopper as a flowing fluid with the standard 1" in 12" floor slope) 	 a. It's claimed that this plowing action takes several revolutions of the mechanism to move solids to the center sludge hopper. b. However, at higher tip speeds, the blades should plow thru the sludge. c. Scraper collection should utilize steeper floor slopes; deeper center depths.
4. Plow collectors are claimed to eliminate the jetting action of the RAS drawn along the collector arm by RSR suction technologies, leading to a "trailing wave of solids" loss at the weirs.	Note: We have not been able to locate signs of any "jetting" along a suction collector arm. In fact, we have shown by field experiment that this phenomenon is <u>not</u> present.
5. Use of a sludge hopper permits thickening of the RAS prior to pumping.	 a. Some "innovative" sludge rings have been promoted to try to replace the valuable central sludge hopper. b. Central sludge hopper is in the zone where inlet-related blanket scour may take place.
6. Proponents claim that the use of a "sludge ring" leads to a more uniform RAS draw-off.	 a. Use of a "sludge ring" may cause drawing a more dilute sludge from the ports opposed to and behind the scraper blades unless there's sufficient sludge blanket over it. b. Carrying a "sufficient" sludge blanket reduces the effective clarifier volume and may increase solids carry-over.

4. Spiral Scraper Mechanisms

Advantages / Claims	Disadvantages
1. Perceived as the "latest" collector	It's been around Europe/UK since the early
technology	1900's, fell into disfavor; has now been
	"rediscovered".
2. Can be used with a simple center sludge	a. Standard hopper design leads to a minor
hopper.	fluctuation of RAS concentrations as
	collectors pass over and beyond the nopper.
	b. Central sludge hopper location can be subject to scouring action
3 Claimed that " deep scraper blade	a But the sludge doesn't have to be scraped
effectively moves solids to the hopper in one	to the hopper: it flows like a thick "soup"!
revolution or less."	b. A deep scraper blade is required to
	prevent overloading the collector with solids.
	c. A deep scraper blade probably promotes
	fluffing of the sludge blanket, esp. at elevated
	(20-30 fpm) tip speeds.
	d. Multiple blades that are required for larger
	blanket
	e. The deep blade profile may increase
	torque; definitely does on primaries!
	f. The deep spiral blade may induce a
	concentrated outward density current.
	g. Scraper collection should require steep
	floor slopes; deeper center depths.
	n. <u>Sludge removal deteriorates</u> with higher SVI's.
4. Claimed that " coupled with a sludge	a. Use of some sludge rings should cause
ring, provides for effective removal of the	drawing a more dilute sludge from the ports
sludge."	opposed to and behind the scraper blades
	uniess there's sufficient sludge blanket
	b Carrying a "sufficient" sludge blanket
	reduces the effective clarifier volume and
	may increase solids carryover.
	c. Carrying a deep sludge blanket increases
	the likelihood of denitrification and P-release.